

KEY FEATURES

- Output power: 100 kW
- DC, 1-ph or 3-ph AC output
- Four-quadrant operation
- Regenerative up to full power
- Scalable up to 600 kW & 3000 VDC
- AC output voltage L-L: 485 V RMS
- AC output current 1-ph: 120 ARMS
- DC output voltage: 820 V
- DC output current: 560 A

- Large-signal BW: 5 kHz
- Small-signal BW: 15 kHz
- Programmable V and I limits
- Voltage accuracy: 0,1%
- Current accuracy: 0,56%
- Peak efficiency: 95%
- Frequency accuracy: 1 mHz
- Meets IEEE 1547.1
- CE Certified

PHIL

GRID

RENEWABLE ENERGY

E-MOBILITY

AEROSPACE

MARINE

ACADEMIC RESEARCH

TESTING

SYSTEM INTRODUCTION

The CSU100-1GAMP4-HV (COMPISO System Unit 100 – Single Group of four Amplifiers) is a galvanically isolated bidirectional 100 kW emulation and test system with four independent bidirectional switched-mode power amplifiers capable of operating in several predefined AC and DC operation modes as well as a wide range of user-defined Hadware-in-the-loop (HIL) based modes. The system can operate in current-control, voltage-control or mixed mode and is capable of acting as a source or sink with seamless transition between sourcing power and regenerating power back to the supply grid. Featuring large-signal bandwidth of 5 kHz and small-signal bandwidth of 15 kHz, the system can generate harmonics up to the 100th order (for 50 Hz fundamental) and interharmonics up to 15 kHz for smooth frequency sweeps. The CSU100-1GAMP4-HV is controlled by an EGSTON Real-Time (RT) Processor or external HIL systems via fast optic fiber (SFP – Small Form Factor Pluggable) or analog interface.

The optional 4QAC Source software application enables generation of arbitrary periodic waveforms whose amplitude, frequency, phase (time shift) and DC offset can be changed every 1 ms. The active and reactive power can be changed separately in each phase every 1 ms, enabling more complex test scenarios such as Low Voltage Ride Through, High Voltage Ride Through, and frequency drift.

The optional 4QDC Source software application is used to execute various DC tests, ranging from simple constant-current, constant-voltage or constant-power operation to more advanced scenarios such as emulation of PV arrays and batteries modelled on I-V curves

The optional PowerSCOPE can be used to monitor system setpoints and generated output voltages and currents. It supports visualization and storage of up to 64 input channels with a sample rate of 250 kS/s per channel.

SYSTEM DESCRIPTION & OPERATION MODES

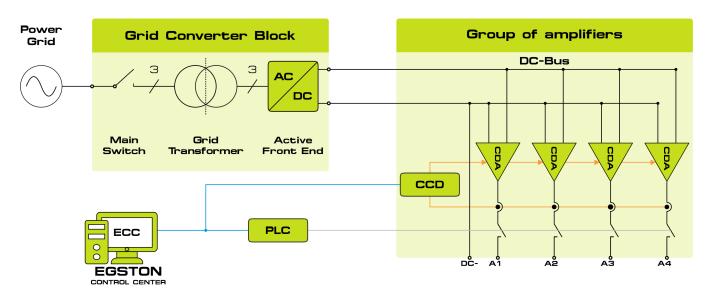


Figure 1. Simplified block diagram of the CSU100-1GAMP4-HV system.

The CSU100-1GAMP4-HV connects to a three-phase+N power grid (three-phase four-wire system) via a galvanic isolation transformer. A protective earth (PE) connection providing adequate grounding must also be available. The system can be adapted to any three-phase power grid voltage from 400–690 V at 50/60 Hz. The transformer feeds an Active Front End (AFE) that converts the grid's AC voltage to a controlled DC-link voltage. The maximum active power that can be sourced from or regenerated to the grid is 100 kW. The CSU100-1GAMP4-HV consists of four COMPISO Digital Amplifiers (CDAs). This amplifier group is controlled by one COMPISO Control Device (CCD) and one Programable Logic Controller (PLC). The output voltage and current of each amplifier are measured at its output terminal. The CSU100-1GAMP4-HV consists of two

cabinets and a desktop PC with EGSTON Control Center (ECC) software used to monitor, configure and control the system operating in any of the standard operation modes illustrated in Figure 2.

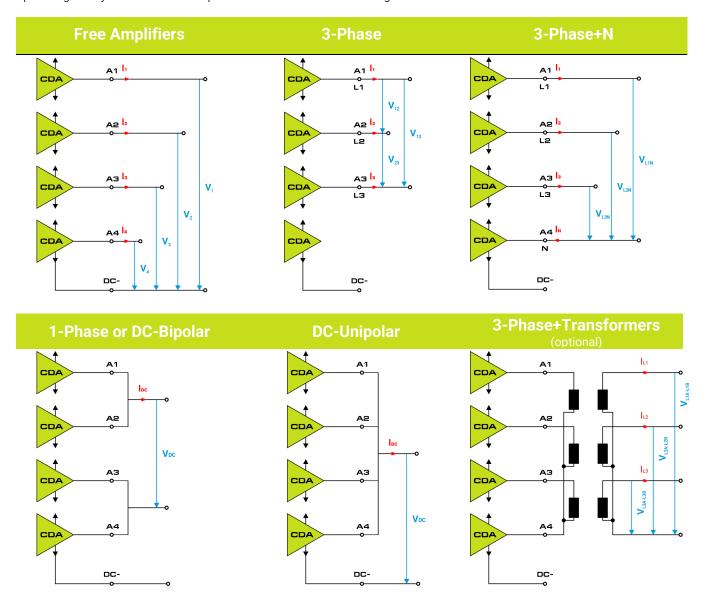


Figure 2. CSU100-1GAMP4-HV operation modes.

The available voltage, current and power range in each operation mode are listed in Table 1. In each operation mode, the system can either operate as a power source or regenerate power back to the grid. The values listed in Table 1. are valid for both directions. In order to increase the output voltage in three-phase operation modes, with or without the neutral terminal, a third harmonic injection can be used. Output power is limited to 100 kW in DC bipolar and DC unipolar operation modes by voltage or current derating, as illustrated in Figure 3.

Table 1. Available voltage, current and power range in each operation mode.

Operation mode: Free amplifie	rs (all values are p	per CDA)	
AC mode ¹			
DC offset voltage	V _{DC}	420 V _{DC}	
Minimum AC voltage	V _{min}	0 V _{RMS}	
Maximum AC voltage	V _{max}	280 V _{RMS}	
Minimum AC current	I _{min}	0 A _{RMS}	
Maximum AC current	I _{max}	120 A _{RMS}	
Maximum active power	P_{max}	33,6 kW	
Maximum apparent power	S _{max}	33,6 kVA	
DC mode (unipolar)			
Minimum DC voltage	V_{min}	20 V _{DC}	
Maximum DC voltage	V _{max}	820 V _{DC}	
Minimum DC current	I _{min}	-140 A _{DC}	
Maximum DC current	I _{max}	140 A _{DC}	
Maximum power	P _{max}	100 kW	
Operation mode: Three-phase	+ N		
Minimum LL voltage	$V_{LL\;min}$	0 V _{RMS}	
Maximum LL voltage	$V_{\text{LL max}}$	485 V _{RMS}	
Maximum LN voltage	V_{LNmax}	280 V _{RMS}	
Minimum current	$I_{L min}$	0 A _{RMS}	
Maximum current	I _{L max}	120 A _{RMS}	
Maximum active power	P_{max}	100 kW	
Maximum apparent power	S_{max}	100 kVA	
Operation mode: Three-phase			
Minimum LL voltage	$V_{LL\;min}$	0 V _{RMS}	
Maximum LL voltage	$V_{\text{LL max}}$	485 V _{RMS}	
Minimum current	I _{L min}	0 A _{RMS}	
Maximum current	I _{L max}	120 A _{RMS}	
Maximum active power	P_{max}	100 kW	
Maximum apparent power	S _{max}	100 kVA	

Table 1. (continued)

3)
O A

 $^{^{1}}$ The CDA output voltage has a DC offset of 420 V (with respect to the DC- terminal). 2 Due to single-phase load on the AFE, power derating applies if the frequency of the output voltage is less than 100 Hz, as shown in Figure 8

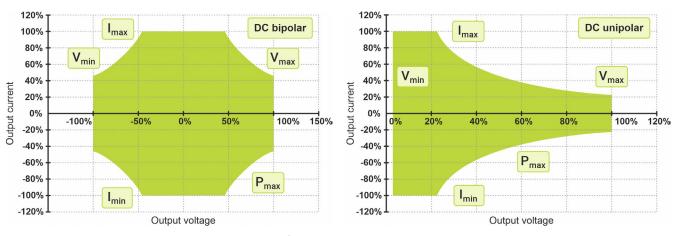


Figure 3. Power limits for DC bipolar and DC unipolar operation modes.

For all AC operation modes, the maximum available output voltage is reduced at higher output frequencies as illustrated in Figure 4 (for resistive loads) and Figure 5 (for inductive loads). This reduction is due to an increased voltage drop across the internal output filter at higher output frequencies. Output voltage derating additionally applies at frequencies above 5 kHz to avoid overheating the output filter capacitors, as illustrated in Figure 6, and output current derating at higher frequencies is necessary to avoid overheating the internal output inductor, as illustrated in Figure 7.

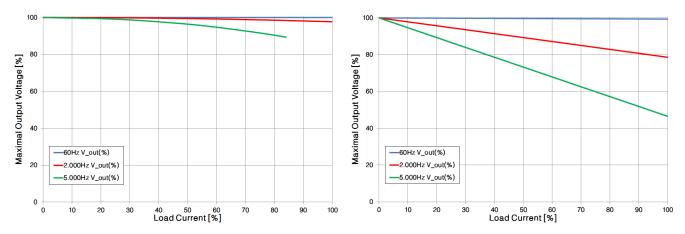


Figure 4. Maximum AC output voltage VS resistive load current

Figure 5. Maximum AC output voltage VS inductive load current.

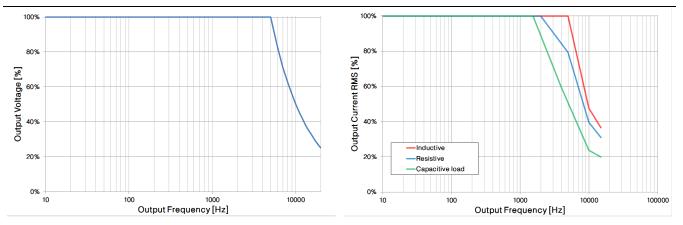


Figure 6. Maximum output voltage versus output frequency.

Figure 7. Maximum output current versus frequency for different load types.

When the standard system operates in single-phase operation mode with an output frequency lower than 100 Hz, the maximum power at the system's output must be reduced, as illustrated in Figure 8. Derating is introduced to limit variation of the DC link voltage, which changes at twice the output frequency, and is determined by the capacitance of the internal DC-link capacitors in the system. The blue line in Figure 8 represents the output power of the standard system, and the red line represents the power of the system with the additional 33 mF capacitors in the DC link. The 100% of PMAX (Smax) corresponds to respective values from Table 1 for Single-phase mode.

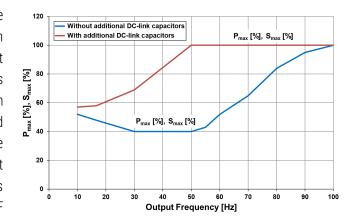


Figure 8. Power derating in single-phase operation mode.

GENERAL SYSTEM PROPERTIES

The electrical properties presented in Table 2 are valid for an ambient temperature of 25°C.

Table 2. General system properties

stem properties						
Number of independent amplifiers		4				
Rated system power	P _{OUT}	100 kW				
System overload for 60 s	I _{OUT_60s}	$1.2 \times I_{OUT}$ (only for DC operation modes)				
System overload for 2 s	I _{OUT_2s}	$1,35 \times I_{OUT}$ (only for DC operation modes)				
Peak system efficiency	η	95% (at rated output power)				
Output harmonics range		Up to the 100 th harmonic at 50 Hz fundamental				
Interharmonics and subharmonics		0,1 Hz to 5 kHz (full voltage) 5–15 kHz (reduced voltage)				
Adjustable limits		Current, voltage				
Adjustable trips		Current, voltage, power				
System protections		Overvoltage, overcurrent, short circuit, overtemperature, humidity				
Rated insulation voltage		1600 V_{DC} (output-to-output and output-to-ground)				
Connection to main supply		Permanent				
Overvoltage category		II				
Protection class		I				
Degree of pollution		2				
Relative humidity		Average:75% Maximum: 85% for up to 30 days, distributed evenly over the year				
Operating temperature		5-30°C				
Maximum altitude		2000 m				
Ingress protection		IP20 (per IEC 60529)				
Noise level (sound pressure level)		< 82 dB (at operator's normal position and bystanders' positions)				

Table 2. (continued)

		Table 2. (continued)				
Certification						
CE Certified						
The product conforms with the	following harmor	nized standards:				
Safety requirements		EN 61010-1:2020				
		EN 62477-1:2012				
		IEC 61000-6-2:2016				
Radio-frequency disturbance		EN 55011:2016 + A1:2017				
Electromagnetic interference		EN IEC 61000-6-2:2019				
The product is compliant with t	he following Euro	pean regulations:				
Low Voltage Directive		2014/35/EU				
EMC Directive		2014/30/EU				
RoHS Directive		2011/65/EU				
Frid converter block						
Grid Connection Type		Three-phase four-wire				
Rated input power	S_{IN}	130 kVA				
Rated input voltage	V_{AC}	400 V _{RMS} ±10% (or 480 V _{RMS} ±10%)				
Input frequency range	f	47,5–63 Hz				
Rated input current	I _{IN}	188 A _{RMS} (for 400 V _{RMS} input), 156 A _{RMS} (for 480 V _{RMS} input)				
Inrush current	I _{INRUSH}	1005 A _{PEAK}				
Power factor	PF	≈1 (also with partial load and at energy regeneration)				
Input current THD	THDi	< 5%				
DC-link voltage	$V_{\text{DC-link}}$	850 V				
DA electrical characteristics						
Maximum DC power	P_{DC}	115 kW (continuous)				
Maximum AC power ³	P_{AC}	33,6 kVA (continuous)				
Output freq. large signal ³	$f_{\text{OUT_LS}}$	0,1 Hz to 5 kHz				
Output freq. small signal ³	$f_{\text{OUT_SS}}$	5–15 kHz				
Output frequency resolution ³		±1 mHz				
Output phase resolution ³		±0,01°				
Output voltage THD ³	THDu	< 0,04% (at 50/60 Hz, no load condition)				
		< 0,09% (at 400 Hz, no load condition)				
Switching frequency	f _{SW}	125 kHz				
Delay time (typical)	t_{d}	28 μs (setpoint-to-output)				
Voltage slew rate	SR	12 V/µs (maximum slew rate of output voltage with a resistive load)				
Output voltage accuracy		±1 V				
Output current accuracy		±1,4 A (current offset compensation available)				
Output voltage ripple	ΔV_{OUT}	3 Vpp maximum				
·	•					

Table 2. (continued)

Output contactors							
Rated operational voltage U _e		1800 V _{DC} or V _{AC} RMS					
Rated insulation voltage U _i		1800 V _{DC} or V _{AC} RMS					
Rated operational current I _e		250 A					
Max making current DC τ = 15 ms (p	er pole)	5000 A					
Max making current AC $\cos \phi = 0.8$	(per pole)	5000 A					
Max breaking current DC τ = 15 ms ((per pole)	500					
Max breaking current AC cos ϕ = 0.8	(per pole)	800 A					
Voltage and current measurement							
Voltage measurement range		±1000 V (DC or AC peak)					
Common-mode voltage range		±1200 V (DC or AC peak)					
Voltage measurement accuracy		±1 V (0.1% of measurement range)					
Current measurement range		±250 A (DC or AC peak)					
Current measurement accuracy		±1,4 A (0,56% of measurement range)					
Measurement resolution		16 bit					
Measurement sample rate		1 MS/s (per channel)					
Measurement bandwidth		0,1 Hz–100 kHz (-3 dB)					

³ Only the AC component of the output voltage is considered, as the CDA output voltage has a DC offset of 420 V. The values characterizing AC operation are valid for all AC modes.

COMMUNICATION ARCHITECTURE & INTERFACES

The basic properties of the communication protocols and interfaces supported by the CSU100-1GAMP4-HV are presented in Table 3, and the communication architecture is illustrated in Figure 9. Supported HIL platforms are listed in Table 3.

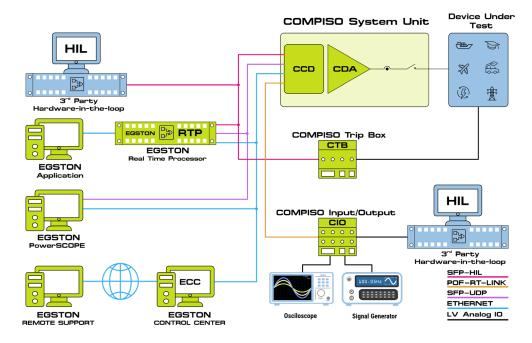


Figure 9. COMPISO communication architecture.

Table 3. Communication protocols and interfaces supported by the CSU100-1GAMP4-HV

Supported commercial HIL platforn	าร				
	OPAL-RT				
	National Instruments				
SFP interface	RTDS				
or menace	Speedgoat Typhoon HIL				
	dSPACE				
Analog interface	Any HIL s	ystem with low-voltage analog input/output signals			
Programming interfaces					
Modbus, Mathlab, Python, Java, C/C					
SFP–HIL ultra-high-speed interface					
3		and an external HIL RT processor (or an EGSTON Power R			
· · ·		etpoints and transmits measured voltages and currents.			
Data rate	5 Gbps				
Latency	≤ 1 µs				
Setpoint time step	4 μs				
Setpoint update frequency	250 kHz	<u>'</u>			
SFP-UDP					
· · · · ·		he EGSTON PowerSCOPE, transmitting measured voltages			
currents and setpoints set via the SF					
Data rate	1 Gbps	(1000BASE-T)			
Ethernet interface (non-RT commu	nication between CSU.	ECC and EGSTON Power applications PC)			
Transmission protocol	TCP				
Data rate	100 Mbps				
· · · · · · · · · · · · · · · · · · ·					
Recommended cable category	CAT 6a or better				
Recommended cable category POF-RT-link-high-speed RT interfa	CAT 6a or better				
POF-RT-link-high-speed RT interfa	ace	SO Input/Output Boxes (CIOs))			
POF–RT-link–high–speed RT interfa RT communication between the CS	ace SU and external COMPI				
POF-RT-link-high-speed RT interfa	ace SU and external COMPI optional and not part of the	e product delivery.			
POF-RT-link-high-speed RT interface RT communication between the CS RT-link interface to connect CIOs is of	ace SU and external COMPI optional and not part of the	e product delivery. s 4 analog input and 4 analog output channels.			
POF-RT-link-high-speed RT interfa RT communication between the CS RT-link interface to connect CIOs is of Number of CIOs connected to CSU	ace SU and external COMPI optional and not part of the 3. Each CIO provides 2,2 mm jacketed pla	e product delivery. 4 analog input and 4 analog output channels. stic optic-fibre cable			
POF-RT-link-high-speed RT interface RT communication between the CS RT-link interface to connect CIOs is a Number of CIOs connected to CSU	ace SU and external COMPI optional and not part of the 3. Each CIO provides 2,2 mm jacketed pla Sample rate	e product delivery. 4 analog input and 4 analog output channels. stic optic-fibre cable 1 MS/s per channel (there are 4 channels in one CIO)			
POF-RT-link-high-speed RT interface RT communication between the CS RT-link interface to connect CIOs is a Number of CIOs connected to CSU Cable	ace SU and external COMPI optional and not part of the 3. Each CIO provides 2,2 mm jacketed pla	e product delivery. 4 analog input and 4 analog output channels. stic optic-fibre cable			
POF-RT-link-high-speed RT interface RT communication between the CS RT-link interface to connect CIOs is a Number of CIOs connected to CSU Cable	ace SU and external COMPI optional and not part of the 3. Each CIO provides 2,2 mm jacketed pla Sample rate	e product delivery. 4 analog input and 4 analog output channels. stic optic-fibre cable 1 MS/s per channel (there are 4 channels in one CIO) ≤ 45,5 µs (from the analog input of CIO to the CSU			

CIO)

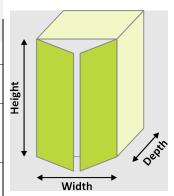
Table 3. (continued)

	Table 3. (Coll	tillueu)				
.ow-voltage analog interface bet	ween CIOs and external HIL	platforms				
Analog input signals	Analog input signals Drives amplifier output voltages or currents.					
Analog output signals	Analog low-voltage outputs that transmit high-power voltage and cu measurements from the CDAs.					
Input/output voltage range	-10 V to 10 V					
Input impedance	50 kΩ					
Sampling rate	250 kHz					
ADC resolution	16 bit					
ow-voltage digital interface (dig	ital interface between the CI	Os and external HIL platfo	orms)			
Digital input signals		CIO over POF—RT-link to the P—RT-link to external HIL or	ŭ			
Digital output signals		RT Processor can send digita al output signal of the CIOs.	ıl values via SFP to the CSU			
Logic levels	Input voltage levels:	$2 \text{ V} \leq V_{\text{IN_HIGH}} \leq 3,6 \text{ V}$	$-0.3 \text{ V} \leq \text{V}_{\text{IN_LOW}} \leq 0.8 \text{ V}$			
(3,3 V LVCMOS)	Output voltage levels:	3,1 V ≤ V _{OUT_HIGH}	V _{OUT_LOW} ≤ 0,2 V			
Maximum currents	Input current:	I _{IN_MIN} = -5 μA	I _{IN_MAX} = 5 μA			
(3,3 V LVCMOS)	Output current:	I _{OUT_MIN} = -100 μA	Ι _{Ουτ_ΜΑΧ} = 100 μΑ			

COOLING REQUIREMENTS

Table 4. Cooling requirements

Liquid cooling (CDAs)	
Cooling media	Water, ethylene glycol, propylene glycol, glycol—water solutions
Minimum required cooling power	4,0 kW $_{th}$ (for all 4 CDAs operating at full power)
Coolant pressure range	2,5–3 bar
Coolant flow rate	14l/min (for all 4 CDAs, using water with an inlet temperature of 20°C)
To avoid condensation, temperature of the c	ooling liquid must be kept higher than the ambient temperature.
Forced-air cooling (cabinets)	
Maximum heat dissipation per	6,5 kW _{th}
CSU100-1GAMP4-HV at full power	



TECHNICAL DATA: MECHANICAL PROPERTIES

The CSU100-1GAMP4-HV system consists of two fixed free-standing cabinets. The dimensions and weight of each cabinet are listed in Table 5.

Table 5. Dimensions and weight of CSU100-1GAMP4-HV cabinets

Mechanical data (cabinet dimensions)								
	Width		Depth		Height		Weight	
	mm	ft	mm	ft	mm	ft	Kg	Ib
Cabinet 1	800	2,63	1200	3,94	2110	6,92	570	1256,60
1GAMP4				,		,		r
Cabinet 2								
AFE &	800	2,63	1200	3,94	2200	7,22	1100	2425,10
Transformer								
Total	1600	5,26	1200	3,94	2200	7,22	1670	3681,70

TESTING CAPABILITIES ACCORDING TO STANDARDS

Power grid:

- IEEE Std. 1547.1; usable as simulated area electric power systems source
- IEC 61000-3-12; meets requirements for power sources

The information presented in this document is subject to change without notice and should not be construed as a commitment by

EGSTON Power Electronics GmbH.

All pictures shown are for illustration purposes only. Actual product may vary due to product enhancement.

